Properties

Label 390400.bzw
Modulus $390400$
Conductor $24400$
Order $60$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390400, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([30,15,57,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(63,390400)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(390400\)
Conductor: \(24400\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 24400.bmi
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{390400}(63,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{17}{30}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\)
\(\chi_{390400}(13247,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{1}{30}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(1\)
\(\chi_{390400}(18367,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{29}{30}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\)
\(\chi_{390400}(24383,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{19}{30}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\)
\(\chi_{390400}(82367,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{19}{30}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\)
\(\chi_{390400}(88383,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{29}{30}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\)
\(\chi_{390400}(93503,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{1}{30}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(1\)
\(\chi_{390400}(106687,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{17}{30}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\)
\(\chi_{390400}(142527,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{13}{30}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\)
\(\chi_{390400}(149823,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{23}{30}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\)
\(\chi_{390400}(205247,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{11}{30}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(1\)
\(\chi_{390400}(215487,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{7}{30}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\)
\(\chi_{390400}(281663,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{7}{30}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\)
\(\chi_{390400}(291903,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{11}{30}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(1\)
\(\chi_{390400}(347327,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{23}{30}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\)
\(\chi_{390400}(354623,\cdot)\) \(-1\) \(1\) \(1\) \(e\left(\frac{13}{30}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\)