Properties

 Modulus $390$ Structure $$C_{2}\times C_{4}\times C_{12}$$ Order $96$

Show commands: PariGP / SageMath

sage: H = DirichletGroup(390)

pari: g = idealstar(,390,2)

Character group

 sage: G.order()  pari: g.no Order = 96 sage: H.invariants()  pari: g.cyc Structure = $$C_{2}\times C_{4}\times C_{12}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{390}(131,\cdot)$, $\chi_{390}(157,\cdot)$, $\chi_{390}(301,\cdot)$

First 32 of 96 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive $$-1$$ $$1$$ $$7$$ $$11$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$
$$\chi_{390}(1,\cdot)$$ 390.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{390}(7,\cdot)$$ 390.bd 12 no $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{390}(11,\cdot)$$ 390.bh 12 no $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{390}(17,\cdot)$$ 390.be 12 no $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$
$$\chi_{390}(19,\cdot)$$ 390.bg 12 no $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-i$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{390}(23,\cdot)$$ 390.be 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{390}(29,\cdot)$$ 390.ba 6 no $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{390}(31,\cdot)$$ 390.o 4 no $$-1$$ $$1$$ $$i$$ $$i$$ $$-1$$ $$-i$$ $$-1$$ $$1$$ $$-i$$ $$i$$ $$-i$$ $$-1$$
$$\chi_{390}(37,\cdot)$$ 390.bd 12 no $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{390}(41,\cdot)$$ 390.bh 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{390}(43,\cdot)$$ 390.bk 12 no $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{390}(47,\cdot)$$ 390.u 4 no $$-1$$ $$1$$ $$1$$ $$i$$ $$i$$ $$-i$$ $$-i$$ $$1$$ $$i$$ $$1$$ $$-i$$ $$i$$
$$\chi_{390}(49,\cdot)$$ 390.x 6 no $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{390}(53,\cdot)$$ 390.l 4 no $$1$$ $$1$$ $$-i$$ $$-1$$ $$i$$ $$-1$$ $$-i$$ $$1$$ $$1$$ $$-i$$ $$-1$$ $$i$$
$$\chi_{390}(59,\cdot)$$ 390.bj 12 no $$1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{390}(61,\cdot)$$ 390.i 3 no $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{390}(67,\cdot)$$ 390.bn 12 no $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{390}(71,\cdot)$$ 390.bh 12 no $$1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{390}(73,\cdot)$$ 390.j 4 no $$1$$ $$1$$ $$-1$$ $$-i$$ $$i$$ $$-i$$ $$-i$$ $$-1$$ $$i$$ $$-1$$ $$i$$ $$-i$$
$$\chi_{390}(77,\cdot)$$ 390.s 4 no $$1$$ $$1$$ $$-i$$ $$1$$ $$-i$$ $$1$$ $$i$$ $$1$$ $$-1$$ $$-i$$ $$1$$ $$-i$$
$$\chi_{390}(79,\cdot)$$ 390.e 2 no $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{390}(83,\cdot)$$ 390.u 4 no $$-1$$ $$1$$ $$1$$ $$-i$$ $$-i$$ $$i$$ $$i$$ $$1$$ $$-i$$ $$1$$ $$i$$ $$-i$$
$$\chi_{390}(89,\cdot)$$ 390.bj 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{390}(97,\cdot)$$ 390.bn 12 no $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{390}(101,\cdot)$$ 390.z 6 no $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{390}(103,\cdot)$$ 390.m 4 no $$-1$$ $$1$$ $$i$$ $$-1$$ $$-i$$ $$1$$ $$i$$ $$-1$$ $$-1$$ $$i$$ $$-1$$ $$i$$
$$\chi_{390}(107,\cdot)$$ 390.bl 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$
$$\chi_{390}(109,\cdot)$$ 390.q 4 no $$-1$$ $$1$$ $$-i$$ $$i$$ $$1$$ $$-i$$ $$1$$ $$1$$ $$-i$$ $$-i$$ $$-i$$ $$1$$
$$\chi_{390}(113,\cdot)$$ 390.bl 12 no $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{390}(119,\cdot)$$ 390.bj 12 no $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{390}(121,\cdot)$$ 390.bb 6 no $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{390}(127,\cdot)$$ 390.bk 12 no $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$