sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3871, base_ring=CyclotomicField(546))
M = H._module
chi = DirichletCharacter(H, M([260,420]))
pari:[g,chi] = znchar(Mod(457,3871))
Modulus: | \(3871\) | |
Conductor: | \(3871\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(273\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3871}(46,\cdot)\)
\(\chi_{3871}(65,\cdot)\)
\(\chi_{3871}(100,\cdot)\)
\(\chi_{3871}(144,\cdot)\)
\(\chi_{3871}(179,\cdot)\)
\(\chi_{3871}(247,\cdot)\)
\(\chi_{3871}(289,\cdot)\)
\(\chi_{3871}(326,\cdot)\)
\(\chi_{3871}(338,\cdot)\)
\(\chi_{3871}(354,\cdot)\)
\(\chi_{3871}(368,\cdot)\)
\(\chi_{3871}(380,\cdot)\)
\(\chi_{3871}(403,\cdot)\)
\(\chi_{3871}(417,\cdot)\)
\(\chi_{3871}(457,\cdot)\)
\(\chi_{3871}(492,\cdot)\)
\(\chi_{3871}(536,\cdot)\)
\(\chi_{3871}(541,\cdot)\)
\(\chi_{3871}(571,\cdot)\)
\(\chi_{3871}(599,\cdot)\)
\(\chi_{3871}(620,\cdot)\)
\(\chi_{3871}(653,\cdot)\)
\(\chi_{3871}(697,\cdot)\)
\(\chi_{3871}(732,\cdot)\)
\(\chi_{3871}(800,\cdot)\)
\(\chi_{3871}(828,\cdot)\)
\(\chi_{3871}(842,\cdot)\)
\(\chi_{3871}(877,\cdot)\)
\(\chi_{3871}(879,\cdot)\)
\(\chi_{3871}(891,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2845,1030)\) → \((e\left(\frac{10}{21}\right),e\left(\frac{10}{13}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 3871 }(457, a) \) |
\(1\) | \(1\) | \(e\left(\frac{125}{273}\right)\) | \(e\left(\frac{67}{273}\right)\) | \(e\left(\frac{250}{273}\right)\) | \(e\left(\frac{137}{273}\right)\) | \(e\left(\frac{64}{91}\right)\) | \(e\left(\frac{34}{91}\right)\) | \(e\left(\frac{134}{273}\right)\) | \(e\left(\frac{262}{273}\right)\) | \(e\left(\frac{97}{273}\right)\) | \(e\left(\frac{44}{273}\right)\) |
sage:chi.jacobi_sum(n)