sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3864, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,33,33,44,18]))
pari:[g,chi] = znchar(Mod(2699,3864))
Modulus: | \(3864\) | |
Conductor: | \(3864\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3864}(179,\cdot)\)
\(\chi_{3864}(347,\cdot)\)
\(\chi_{3864}(443,\cdot)\)
\(\chi_{3864}(515,\cdot)\)
\(\chi_{3864}(611,\cdot)\)
\(\chi_{3864}(683,\cdot)\)
\(\chi_{3864}(947,\cdot)\)
\(\chi_{3864}(1283,\cdot)\)
\(\chi_{3864}(1451,\cdot)\)
\(\chi_{3864}(1619,\cdot)\)
\(\chi_{3864}(1691,\cdot)\)
\(\chi_{3864}(1787,\cdot)\)
\(\chi_{3864}(2027,\cdot)\)
\(\chi_{3864}(2699,\cdot)\)
\(\chi_{3864}(2795,\cdot)\)
\(\chi_{3864}(3131,\cdot)\)
\(\chi_{3864}(3203,\cdot)\)
\(\chi_{3864}(3371,\cdot)\)
\(\chi_{3864}(3707,\cdot)\)
\(\chi_{3864}(3803,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((967,1933,1289,2761,2857)\) → \((-1,-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{3}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 3864 }(2699, a) \) |
\(1\) | \(1\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{66}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{37}{66}\right)\) | \(e\left(\frac{17}{22}\right)\) |
sage:chi.jacobi_sum(n)