sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3864, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([0,33,33,44,63]))
pari:[g,chi] = znchar(Mod(221,3864))
| Modulus: | \(3864\) | |
| Conductor: | \(3864\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3864}(53,\cdot)\)
\(\chi_{3864}(149,\cdot)\)
\(\chi_{3864}(221,\cdot)\)
\(\chi_{3864}(389,\cdot)\)
\(\chi_{3864}(557,\cdot)\)
\(\chi_{3864}(893,\cdot)\)
\(\chi_{3864}(1157,\cdot)\)
\(\chi_{3864}(1229,\cdot)\)
\(\chi_{3864}(1325,\cdot)\)
\(\chi_{3864}(1397,\cdot)\)
\(\chi_{3864}(1493,\cdot)\)
\(\chi_{3864}(1661,\cdot)\)
\(\chi_{3864}(1901,\cdot)\)
\(\chi_{3864}(1997,\cdot)\)
\(\chi_{3864}(2333,\cdot)\)
\(\chi_{3864}(2501,\cdot)\)
\(\chi_{3864}(2573,\cdot)\)
\(\chi_{3864}(2909,\cdot)\)
\(\chi_{3864}(3005,\cdot)\)
\(\chi_{3864}(3677,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((967,1933,1289,2761,2857)\) → \((1,-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{21}{22}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 3864 }(221, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{21}{22}\right)\) |
sage:chi.jacobi_sum(n)