sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3864, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,11,11,17]))
pari:[g,chi] = znchar(Mod(1763,3864))
| Modulus: | \(3864\) | |
| Conductor: | \(3864\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3864}(83,\cdot)\)
\(\chi_{3864}(251,\cdot)\)
\(\chi_{3864}(419,\cdot)\)
\(\chi_{3864}(755,\cdot)\)
\(\chi_{3864}(1091,\cdot)\)
\(\chi_{3864}(1259,\cdot)\)
\(\chi_{3864}(1763,\cdot)\)
\(\chi_{3864}(2435,\cdot)\)
\(\chi_{3864}(2771,\cdot)\)
\(\chi_{3864}(3779,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((967,1933,1289,2761,2857)\) → \((-1,-1,-1,-1,e\left(\frac{17}{22}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 3864 }(1763, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) |
sage:chi.jacobi_sum(n)