Properties

Label 3825.574
Modulus $3825$
Conductor $765$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3825, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([8,6,3]))
 
Copy content pari:[g,chi] = znchar(Mod(574,3825))
 

Basic properties

Modulus: \(3825\)
Conductor: \(765\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{765}(574,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3825.bt

\(\chi_{3825}(574,\cdot)\) \(\chi_{3825}(1024,\cdot)\) \(\chi_{3825}(1849,\cdot)\) \(\chi_{3825}(2299,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.79762800524200255265625.1

Values on generators

\((2126,2602,2026)\) → \((e\left(\frac{2}{3}\right),-1,i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(19\)\(22\)
\( \chi_{ 3825 }(574, a) \) \(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{1}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3825 }(574,a) \;\) at \(\;a = \) e.g. 2