Properties

Label 3825.511
Modulus $3825$
Conductor $225$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3825, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([20,24,0]))
 
Copy content pari:[g,chi] = znchar(Mod(511,3825))
 

Basic properties

Modulus: \(3825\)
Conductor: \(225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(15\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{225}(61,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3825.ce

\(\chi_{3825}(256,\cdot)\) \(\chi_{3825}(511,\cdot)\) \(\chi_{3825}(1021,\cdot)\) \(\chi_{3825}(1786,\cdot)\) \(\chi_{3825}(2041,\cdot)\) \(\chi_{3825}(2806,\cdot)\) \(\chi_{3825}(3316,\cdot)\) \(\chi_{3825}(3571,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

\((2126,2602,2026)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{4}{5}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(19\)\(22\)
\( \chi_{ 3825 }(511, a) \) \(1\)\(1\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{14}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3825 }(511,a) \;\) at \(\;a = \) e.g. 2