sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(381, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,6]))
pari:[g,chi] = znchar(Mod(191,381))
| Modulus: | \(381\) | |
| Conductor: | \(381\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(14\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{381}(2,\cdot)\)
\(\chi_{381}(8,\cdot)\)
\(\chi_{381}(32,\cdot)\)
\(\chi_{381}(131,\cdot)\)
\(\chi_{381}(143,\cdot)\)
\(\chi_{381}(191,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((128,130)\) → \((-1,e\left(\frac{3}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 381 }(191, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)