Properties

Label 381.124
Modulus $381$
Conductor $127$
Order $63$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(381, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([0,64]))
 
Copy content pari:[g,chi] = znchar(Mod(124,381))
 

Basic properties

Modulus: \(381\)
Conductor: \(127\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(63\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{127}(124,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 381.u

\(\chi_{381}(13,\cdot)\) \(\chi_{381}(31,\cdot)\) \(\chi_{381}(34,\cdot)\) \(\chi_{381}(49,\cdot)\) \(\chi_{381}(70,\cdot)\) \(\chi_{381}(79,\cdot)\) \(\chi_{381}(82,\cdot)\) \(\chi_{381}(88,\cdot)\) \(\chi_{381}(115,\cdot)\) \(\chi_{381}(121,\cdot)\) \(\chi_{381}(124,\cdot)\) \(\chi_{381}(136,\cdot)\) \(\chi_{381}(142,\cdot)\) \(\chi_{381}(145,\cdot)\) \(\chi_{381}(148,\cdot)\) \(\chi_{381}(157,\cdot)\) \(\chi_{381}(163,\cdot)\) \(\chi_{381}(169,\cdot)\) \(\chi_{381}(187,\cdot)\) \(\chi_{381}(196,\cdot)\) \(\chi_{381}(199,\cdot)\) \(\chi_{381}(208,\cdot)\) \(\chi_{381}(211,\cdot)\) \(\chi_{381}(247,\cdot)\) \(\chi_{381}(265,\cdot)\) \(\chi_{381}(271,\cdot)\) \(\chi_{381}(280,\cdot)\) \(\chi_{381}(289,\cdot)\) \(\chi_{381}(295,\cdot)\) \(\chi_{381}(298,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

Values on generators

\((128,130)\) → \((1,e\left(\frac{32}{63}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 381 }(124, a) \) \(1\)\(1\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{26}{63}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{34}{63}\right)\)\(e\left(\frac{47}{63}\right)\)\(e\left(\frac{62}{63}\right)\)\(e\left(\frac{2}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 381 }(124,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 381 }(124,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 381 }(124,·),\chi_{ 381 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 381 }(124,·)) \;\) at \(\; a,b = \) e.g. 1,2