Properties

Label 3800.23
Modulus $3800$
Conductor $1900$
Order $180$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3800, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([90,0,99,20]))
 
Copy content pari:[g,chi] = znchar(Mod(23,3800))
 

Basic properties

Modulus: \(3800\)
Conductor: \(1900\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1900}(23,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3800.fg

\(\chi_{3800}(23,\cdot)\) \(\chi_{3800}(47,\cdot)\) \(\chi_{3800}(63,\cdot)\) \(\chi_{3800}(263,\cdot)\) \(\chi_{3800}(327,\cdot)\) \(\chi_{3800}(367,\cdot)\) \(\chi_{3800}(423,\cdot)\) \(\chi_{3800}(503,\cdot)\) \(\chi_{3800}(567,\cdot)\) \(\chi_{3800}(663,\cdot)\) \(\chi_{3800}(727,\cdot)\) \(\chi_{3800}(783,\cdot)\) \(\chi_{3800}(823,\cdot)\) \(\chi_{3800}(967,\cdot)\) \(\chi_{3800}(1023,\cdot)\) \(\chi_{3800}(1087,\cdot)\) \(\chi_{3800}(1127,\cdot)\) \(\chi_{3800}(1183,\cdot)\) \(\chi_{3800}(1263,\cdot)\) \(\chi_{3800}(1327,\cdot)\) \(\chi_{3800}(1423,\cdot)\) \(\chi_{3800}(1487,\cdot)\) \(\chi_{3800}(1567,\cdot)\) \(\chi_{3800}(1583,\cdot)\) \(\chi_{3800}(1727,\cdot)\) \(\chi_{3800}(1783,\cdot)\) \(\chi_{3800}(1847,\cdot)\) \(\chi_{3800}(1887,\cdot)\) \(\chi_{3800}(2023,\cdot)\) \(\chi_{3800}(2087,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((951,1901,1977,401)\) → \((-1,1,e\left(\frac{11}{20}\right),e\left(\frac{1}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3800 }(23, a) \) \(1\)\(1\)\(e\left(\frac{143}{180}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{53}{90}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{1}{180}\right)\)\(e\left(\frac{47}{180}\right)\)\(e\left(\frac{32}{45}\right)\)\(e\left(\frac{139}{180}\right)\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{89}{90}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3800 }(23,a) \;\) at \(\;a = \) e.g. 2