Properties

Label 379.119
Modulus $379$
Conductor $379$
Order $7$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(379, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([10]))
 
Copy content pari:[g,chi] = znchar(Mod(119,379))
 

Basic properties

Modulus: \(379\)
Conductor: \(379\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(7\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 379.e

\(\chi_{379}(86,\cdot)\) \(\chi_{379}(94,\cdot)\) \(\chi_{379}(119,\cdot)\) \(\chi_{379}(125,\cdot)\) \(\chi_{379}(138,\cdot)\) \(\chi_{379}(195,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 7.7.2963706958323721.1

Values on generators

\(2\) → \(e\left(\frac{5}{7}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 379 }(119, a) \) \(1\)\(1\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 379 }(119,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 379 }(119,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 379 }(119,·),\chi_{ 379 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 379 }(119,·)) \;\) at \(\; a,b = \) e.g. 1,2