sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([120,88]))
pari:[g,chi] = znchar(Mod(826,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(165\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(45,\cdot)\)
\(\chi_{3751}(100,\cdot)\)
\(\chi_{3751}(111,\cdot)\)
\(\chi_{3751}(133,\cdot)\)
\(\chi_{3751}(144,\cdot)\)
\(\chi_{3751}(276,\cdot)\)
\(\chi_{3751}(298,\cdot)\)
\(\chi_{3751}(320,\cdot)\)
\(\chi_{3751}(386,\cdot)\)
\(\chi_{3751}(441,\cdot)\)
\(\chi_{3751}(452,\cdot)\)
\(\chi_{3751}(474,\cdot)\)
\(\chi_{3751}(617,\cdot)\)
\(\chi_{3751}(639,\cdot)\)
\(\chi_{3751}(661,\cdot)\)
\(\chi_{3751}(782,\cdot)\)
\(\chi_{3751}(793,\cdot)\)
\(\chi_{3751}(815,\cdot)\)
\(\chi_{3751}(826,\cdot)\)
\(\chi_{3751}(958,\cdot)\)
\(\chi_{3751}(980,\cdot)\)
\(\chi_{3751}(1002,\cdot)\)
\(\chi_{3751}(1068,\cdot)\)
\(\chi_{3751}(1123,\cdot)\)
\(\chi_{3751}(1134,\cdot)\)
\(\chi_{3751}(1156,\cdot)\)
\(\chi_{3751}(1167,\cdot)\)
\(\chi_{3751}(1299,\cdot)\)
\(\chi_{3751}(1321,\cdot)\)
\(\chi_{3751}(1343,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{4}{11}\right),e\left(\frac{4}{15}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(826, a) \) |
\(1\) | \(1\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{2}{165}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{165}\right)\) | \(e\left(\frac{131}{165}\right)\) |
sage:chi.jacobi_sum(n)