Properties

Label 3751.2729
Modulus $3751$
Conductor $121$
Order $11$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([20,0]))
 
Copy content pari:[g,chi] = znchar(Mod(2729,3751))
 

Basic properties

Modulus: \(3751\)
Conductor: \(121\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(11\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{121}(67,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3751.bg

\(\chi_{3751}(342,\cdot)\) \(\chi_{3751}(683,\cdot)\) \(\chi_{3751}(1024,\cdot)\) \(\chi_{3751}(1365,\cdot)\) \(\chi_{3751}(1706,\cdot)\) \(\chi_{3751}(2047,\cdot)\) \(\chi_{3751}(2388,\cdot)\) \(\chi_{3751}(2729,\cdot)\) \(\chi_{3751}(3070,\cdot)\) \(\chi_{3751}(3411,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 11.11.672749994932560009201.1

Values on generators

\((2543,2421)\) → \((e\left(\frac{10}{11}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 3751 }(2729, a) \) \(1\)\(1\)\(e\left(\frac{10}{11}\right)\)\(1\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{8}{11}\right)\)\(1\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{9}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3751 }(2729,a) \;\) at \(\;a = \) e.g. 2