sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([56,88]))
pari:[g,chi] = znchar(Mod(1087,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(55\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(4,\cdot)\)
\(\chi_{3751}(16,\cdot)\)
\(\chi_{3751}(64,\cdot)\)
\(\chi_{3751}(256,\cdot)\)
\(\chi_{3751}(345,\cdot)\)
\(\chi_{3751}(357,\cdot)\)
\(\chi_{3751}(405,\cdot)\)
\(\chi_{3751}(597,\cdot)\)
\(\chi_{3751}(698,\cdot)\)
\(\chi_{3751}(746,\cdot)\)
\(\chi_{3751}(938,\cdot)\)
\(\chi_{3751}(1027,\cdot)\)
\(\chi_{3751}(1039,\cdot)\)
\(\chi_{3751}(1087,\cdot)\)
\(\chi_{3751}(1279,\cdot)\)
\(\chi_{3751}(1368,\cdot)\)
\(\chi_{3751}(1380,\cdot)\)
\(\chi_{3751}(1428,\cdot)\)
\(\chi_{3751}(1620,\cdot)\)
\(\chi_{3751}(1709,\cdot)\)
\(\chi_{3751}(1769,\cdot)\)
\(\chi_{3751}(1961,\cdot)\)
\(\chi_{3751}(2050,\cdot)\)
\(\chi_{3751}(2062,\cdot)\)
\(\chi_{3751}(2110,\cdot)\)
\(\chi_{3751}(2391,\cdot)\)
\(\chi_{3751}(2403,\cdot)\)
\(\chi_{3751}(2451,\cdot)\)
\(\chi_{3751}(2643,\cdot)\)
\(\chi_{3751}(2732,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{28}{55}\right),e\left(\frac{4}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(1087, a) \) |
\(1\) | \(1\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{1}{55}\right)\) |
sage:chi.jacobi_sum(n)