sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([28,22]))
pari:[g,chi] = znchar(Mod(1070,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(55\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(47,\cdot)\)
\(\chi_{3751}(159,\cdot)\)
\(\chi_{3751}(163,\cdot)\)
\(\chi_{3751}(312,\cdot)\)
\(\chi_{3751}(388,\cdot)\)
\(\chi_{3751}(500,\cdot)\)
\(\chi_{3751}(504,\cdot)\)
\(\chi_{3751}(653,\cdot)\)
\(\chi_{3751}(841,\cdot)\)
\(\chi_{3751}(845,\cdot)\)
\(\chi_{3751}(994,\cdot)\)
\(\chi_{3751}(1070,\cdot)\)
\(\chi_{3751}(1182,\cdot)\)
\(\chi_{3751}(1186,\cdot)\)
\(\chi_{3751}(1335,\cdot)\)
\(\chi_{3751}(1411,\cdot)\)
\(\chi_{3751}(1523,\cdot)\)
\(\chi_{3751}(1527,\cdot)\)
\(\chi_{3751}(1676,\cdot)\)
\(\chi_{3751}(1752,\cdot)\)
\(\chi_{3751}(1864,\cdot)\)
\(\chi_{3751}(1868,\cdot)\)
\(\chi_{3751}(2093,\cdot)\)
\(\chi_{3751}(2209,\cdot)\)
\(\chi_{3751}(2358,\cdot)\)
\(\chi_{3751}(2434,\cdot)\)
\(\chi_{3751}(2546,\cdot)\)
\(\chi_{3751}(2699,\cdot)\)
\(\chi_{3751}(2775,\cdot)\)
\(\chi_{3751}(2887,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{14}{55}\right),e\left(\frac{1}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(1070, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{39}{55}\right)\) |
sage:chi.jacobi_sum(n)