sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([162,220]))
pari:[g,chi] = znchar(Mod(1028,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(165\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(5,\cdot)\)
\(\chi_{3751}(25,\cdot)\)
\(\chi_{3751}(36,\cdot)\)
\(\chi_{3751}(180,\cdot)\)
\(\chi_{3751}(191,\cdot)\)
\(\chi_{3751}(273,\cdot)\)
\(\chi_{3751}(284,\cdot)\)
\(\chi_{3751}(335,\cdot)\)
\(\chi_{3751}(346,\cdot)\)
\(\chi_{3751}(377,\cdot)\)
\(\chi_{3751}(521,\cdot)\)
\(\chi_{3751}(532,\cdot)\)
\(\chi_{3751}(625,\cdot)\)
\(\chi_{3751}(676,\cdot)\)
\(\chi_{3751}(687,\cdot)\)
\(\chi_{3751}(707,\cdot)\)
\(\chi_{3751}(718,\cdot)\)
\(\chi_{3751}(862,\cdot)\)
\(\chi_{3751}(873,\cdot)\)
\(\chi_{3751}(955,\cdot)\)
\(\chi_{3751}(966,\cdot)\)
\(\chi_{3751}(1017,\cdot)\)
\(\chi_{3751}(1028,\cdot)\)
\(\chi_{3751}(1048,\cdot)\)
\(\chi_{3751}(1059,\cdot)\)
\(\chi_{3751}(1203,\cdot)\)
\(\chi_{3751}(1214,\cdot)\)
\(\chi_{3751}(1296,\cdot)\)
\(\chi_{3751}(1307,\cdot)\)
\(\chi_{3751}(1369,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{27}{55}\right),e\left(\frac{2}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(1028, a) \) |
\(1\) | \(1\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{109}{165}\right)\) | \(e\left(\frac{59}{165}\right)\) | \(e\left(\frac{17}{165}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{28}{33}\right)\) |
sage:chi.jacobi_sum(n)