sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([84,22]))
pari:[g,chi] = znchar(Mod(102,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(165\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(14,\cdot)\)
\(\chi_{3751}(49,\cdot)\)
\(\chi_{3751}(102,\cdot)\)
\(\chi_{3751}(174,\cdot)\)
\(\chi_{3751}(196,\cdot)\)
\(\chi_{3751}(214,\cdot)\)
\(\chi_{3751}(224,\cdot)\)
\(\chi_{3751}(268,\cdot)\)
\(\chi_{3751}(355,\cdot)\)
\(\chi_{3751}(443,\cdot)\)
\(\chi_{3751}(515,\cdot)\)
\(\chi_{3751}(537,\cdot)\)
\(\chi_{3751}(555,\cdot)\)
\(\chi_{3751}(609,\cdot)\)
\(\chi_{3751}(696,\cdot)\)
\(\chi_{3751}(731,\cdot)\)
\(\chi_{3751}(784,\cdot)\)
\(\chi_{3751}(878,\cdot)\)
\(\chi_{3751}(896,\cdot)\)
\(\chi_{3751}(906,\cdot)\)
\(\chi_{3751}(950,\cdot)\)
\(\chi_{3751}(1037,\cdot)\)
\(\chi_{3751}(1072,\cdot)\)
\(\chi_{3751}(1125,\cdot)\)
\(\chi_{3751}(1197,\cdot)\)
\(\chi_{3751}(1247,\cdot)\)
\(\chi_{3751}(1378,\cdot)\)
\(\chi_{3751}(1413,\cdot)\)
\(\chi_{3751}(1466,\cdot)\)
\(\chi_{3751}(1538,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{14}{55}\right),e\left(\frac{1}{15}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(102, a) \) |
\(1\) | \(1\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{28}{165}\right)\) | \(e\left(\frac{53}{165}\right)\) | \(e\left(\frac{107}{165}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{4}{165}\right)\) | \(e\left(\frac{29}{165}\right)\) |
sage:chi.jacobi_sum(n)