sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([27,11]))
pari:[g,chi] = znchar(Mod(1019,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(85,\cdot)\)
\(\chi_{3751}(277,\cdot)\)
\(\chi_{3751}(325,\cdot)\)
\(\chi_{3751}(337,\cdot)\)
\(\chi_{3751}(426,\cdot)\)
\(\chi_{3751}(618,\cdot)\)
\(\chi_{3751}(666,\cdot)\)
\(\chi_{3751}(678,\cdot)\)
\(\chi_{3751}(767,\cdot)\)
\(\chi_{3751}(1007,\cdot)\)
\(\chi_{3751}(1019,\cdot)\)
\(\chi_{3751}(1108,\cdot)\)
\(\chi_{3751}(1300,\cdot)\)
\(\chi_{3751}(1348,\cdot)\)
\(\chi_{3751}(1360,\cdot)\)
\(\chi_{3751}(1641,\cdot)\)
\(\chi_{3751}(1689,\cdot)\)
\(\chi_{3751}(1701,\cdot)\)
\(\chi_{3751}(1790,\cdot)\)
\(\chi_{3751}(1982,\cdot)\)
\(\chi_{3751}(2042,\cdot)\)
\(\chi_{3751}(2131,\cdot)\)
\(\chi_{3751}(2323,\cdot)\)
\(\chi_{3751}(2371,\cdot)\)
\(\chi_{3751}(2383,\cdot)\)
\(\chi_{3751}(2472,\cdot)\)
\(\chi_{3751}(2664,\cdot)\)
\(\chi_{3751}(2712,\cdot)\)
\(\chi_{3751}(2724,\cdot)\)
\(\chi_{3751}(2813,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{27}{110}\right),e\left(\frac{1}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(1019, a) \) |
\(1\) | \(1\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{57}{110}\right)\) | \(e\left(\frac{103}{110}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{89}{110}\right)\) | \(e\left(\frac{109}{110}\right)\) |
sage:chi.jacobi_sum(n)