sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([288,286]))
pari:[g,chi] = znchar(Mod(1010,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(165\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(69,\cdot)\)
\(\chi_{3751}(113,\cdot)\)
\(\chi_{3751}(152,\cdot)\)
\(\chi_{3751}(169,\cdot)\)
\(\chi_{3751}(236,\cdot)\)
\(\chi_{3751}(257,\cdot)\)
\(\chi_{3751}(258,\cdot)\)
\(\chi_{3751}(328,\cdot)\)
\(\chi_{3751}(410,\cdot)\)
\(\chi_{3751}(454,\cdot)\)
\(\chi_{3751}(510,\cdot)\)
\(\chi_{3751}(577,\cdot)\)
\(\chi_{3751}(598,\cdot)\)
\(\chi_{3751}(599,\cdot)\)
\(\chi_{3751}(669,\cdot)\)
\(\chi_{3751}(751,\cdot)\)
\(\chi_{3751}(795,\cdot)\)
\(\chi_{3751}(834,\cdot)\)
\(\chi_{3751}(851,\cdot)\)
\(\chi_{3751}(918,\cdot)\)
\(\chi_{3751}(939,\cdot)\)
\(\chi_{3751}(940,\cdot)\)
\(\chi_{3751}(1010,\cdot)\)
\(\chi_{3751}(1136,\cdot)\)
\(\chi_{3751}(1175,\cdot)\)
\(\chi_{3751}(1192,\cdot)\)
\(\chi_{3751}(1259,\cdot)\)
\(\chi_{3751}(1280,\cdot)\)
\(\chi_{3751}(1281,\cdot)\)
\(\chi_{3751}(1351,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{48}{55}\right),e\left(\frac{13}{15}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(1010, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{151}{165}\right)\) | \(e\left(\frac{56}{165}\right)\) | \(e\left(\frac{62}{165}\right)\) | \(e\left(\frac{1}{55}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{97}{165}\right)\) | \(e\left(\frac{2}{165}\right)\) |
sage:chi.jacobi_sum(n)