sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([90,22]))
pari:[g,chi] = znchar(Mod(1101,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(55\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(78,\cdot)\)
\(\chi_{3751}(188,\cdot)\)
\(\chi_{3751}(221,\cdot)\)
\(\chi_{3751}(287,\cdot)\)
\(\chi_{3751}(419,\cdot)\)
\(\chi_{3751}(529,\cdot)\)
\(\chi_{3751}(562,\cdot)\)
\(\chi_{3751}(628,\cdot)\)
\(\chi_{3751}(760,\cdot)\)
\(\chi_{3751}(870,\cdot)\)
\(\chi_{3751}(903,\cdot)\)
\(\chi_{3751}(1101,\cdot)\)
\(\chi_{3751}(1244,\cdot)\)
\(\chi_{3751}(1310,\cdot)\)
\(\chi_{3751}(1442,\cdot)\)
\(\chi_{3751}(1552,\cdot)\)
\(\chi_{3751}(1585,\cdot)\)
\(\chi_{3751}(1651,\cdot)\)
\(\chi_{3751}(1783,\cdot)\)
\(\chi_{3751}(1893,\cdot)\)
\(\chi_{3751}(1926,\cdot)\)
\(\chi_{3751}(1992,\cdot)\)
\(\chi_{3751}(2124,\cdot)\)
\(\chi_{3751}(2234,\cdot)\)
\(\chi_{3751}(2267,\cdot)\)
\(\chi_{3751}(2333,\cdot)\)
\(\chi_{3751}(2465,\cdot)\)
\(\chi_{3751}(2575,\cdot)\)
\(\chi_{3751}(2608,\cdot)\)
\(\chi_{3751}(2674,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{9}{11}\right),e\left(\frac{1}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(1101, a) \) |
\(1\) | \(1\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{24}{55}\right)\) |
sage:chi.jacobi_sum(n)