L(s) = 1 | + (−0.736 − 0.676i)2-s + (0.309 + 0.951i)3-s + (0.0855 + 0.996i)4-s + (−0.959 − 0.281i)5-s + (0.415 − 0.909i)6-s + (−0.466 + 0.884i)7-s + (0.610 − 0.791i)8-s + (−0.809 + 0.587i)9-s + (0.516 + 0.856i)10-s + (−0.921 + 0.389i)12-s + (0.516 − 0.856i)13-s + (0.941 − 0.336i)14-s + (−0.0285 − 0.999i)15-s + (−0.985 + 0.170i)16-s + (−0.998 + 0.0570i)17-s + (0.993 + 0.113i)18-s + ⋯ |
L(s) = 1 | + (−0.736 − 0.676i)2-s + (0.309 + 0.951i)3-s + (0.0855 + 0.996i)4-s + (−0.959 − 0.281i)5-s + (0.415 − 0.909i)6-s + (−0.466 + 0.884i)7-s + (0.610 − 0.791i)8-s + (−0.809 + 0.587i)9-s + (0.516 + 0.856i)10-s + (−0.921 + 0.389i)12-s + (0.516 − 0.856i)13-s + (0.941 − 0.336i)14-s + (−0.0285 − 0.999i)15-s + (−0.985 + 0.170i)16-s + (−0.998 + 0.0570i)17-s + (0.993 + 0.113i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.659 + 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.659 + 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4787211966 + 0.2169051790i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4787211966 + 0.2169051790i\) |
\(L(1)\) |
\(\approx\) |
\(0.5551239535 + 0.03565680240i\) |
\(L(1)\) |
\(\approx\) |
\(0.5551239535 + 0.03565680240i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.736 - 0.676i)T \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 5 | \( 1 + (-0.959 - 0.281i)T \) |
| 7 | \( 1 + (-0.466 + 0.884i)T \) |
| 13 | \( 1 + (0.516 - 0.856i)T \) |
| 17 | \( 1 + (-0.998 + 0.0570i)T \) |
| 19 | \( 1 + (-0.254 - 0.967i)T \) |
| 23 | \( 1 + (-0.466 - 0.884i)T \) |
| 29 | \( 1 + (-0.254 - 0.967i)T \) |
| 37 | \( 1 + (-0.654 + 0.755i)T \) |
| 41 | \( 1 + (-0.736 - 0.676i)T \) |
| 43 | \( 1 + (-0.0285 + 0.999i)T \) |
| 47 | \( 1 + (-0.736 + 0.676i)T \) |
| 53 | \( 1 + (0.696 + 0.717i)T \) |
| 59 | \( 1 + (-0.736 + 0.676i)T \) |
| 61 | \( 1 + (0.415 + 0.909i)T \) |
| 67 | \( 1 + (0.415 - 0.909i)T \) |
| 71 | \( 1 + (-0.362 + 0.931i)T \) |
| 73 | \( 1 + (0.696 - 0.717i)T \) |
| 79 | \( 1 + (0.941 - 0.336i)T \) |
| 83 | \( 1 + (-0.985 - 0.170i)T \) |
| 89 | \( 1 + (-0.362 - 0.931i)T \) |
| 97 | \( 1 + (0.941 + 0.336i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.54775662866764895780259730385, −17.96838288171071914290984290274, −17.14377826765115496014764857741, −16.50013653148709612423460903721, −15.91015399617402792262025012054, −15.16671474027391072442169406346, −14.37530045549333092596078671936, −13.88237035163963136590409534788, −13.19607052644666339023964312053, −12.28546667393451078156155489886, −11.42848534002188735688950382500, −10.95699234424276448271977777859, −10.07707195742652081344567505359, −9.1955614515548502331275740276, −8.48162872473925927169028077428, −7.95791718937276137005670463272, −7.09548137056237888128643571117, −6.84748691545976177798137604833, −6.180267903724223028996147781662, −5.10478234060710772209147596496, −3.93836196356645400428895523752, −3.46622596591756275197247245884, −2.10983555162417923362936344182, −1.44796045440015155363207452245, −0.35393473622823460288109252913,
0.52473904944445807608212497156, 2.01671765214747947046239021709, 2.84970014547015844055715133551, 3.3139579282221649076420845375, 4.264891961007955565419820575640, 4.73420086242455615502348025993, 5.88869306502570555014389813751, 6.82890996121233531340011442912, 7.87090248383747520368998676025, 8.55505452050870259185371296652, 8.78770177837642384063568826579, 9.60945061963314402938163988388, 10.36647462604717459963837598605, 11.055041847476653223166190420397, 11.56521493441748946135772594510, 12.33027981987254194373285064438, 13.03614881445419988074655153324, 13.70311977227907467147560662506, 15.13415979147109143910082926500, 15.3432932211075523529431229061, 15.963745925146156963027639555564, 16.556174395721253409341514873654, 17.3600268411254668790429899870, 18.12190622377042646440436922717, 18.87052889274706014504676239640