Properties

Label 3744.509
Modulus $3744$
Conductor $3744$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3744, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,9,20,2]))
 
Copy content pari:[g,chi] = znchar(Mod(509,3744))
 

Basic properties

Modulus: \(3744\)
Conductor: \(3744\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3744.ks

\(\chi_{3744}(461,\cdot)\) \(\chi_{3744}(509,\cdot)\) \(\chi_{3744}(869,\cdot)\) \(\chi_{3744}(1541,\cdot)\) \(\chi_{3744}(2333,\cdot)\) \(\chi_{3744}(2381,\cdot)\) \(\chi_{3744}(2741,\cdot)\) \(\chi_{3744}(3413,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.4774286944044402340341701097284926795814892866884242237316453009195008.3

Values on generators

\((703,2341,2081,2017)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{5}{6}\right),e\left(\frac{1}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3744 }(509, a) \) \(1\)\(1\)\(e\left(\frac{7}{24}\right)\)\(1\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{24}\right)\)\(i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3744 }(509,a) \;\) at \(\;a = \) e.g. 2