Properties

Label 3744.3493
Modulus $3744$
Conductor $416$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3744, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,3,0,16]))
 
Copy content pari:[g,chi] = znchar(Mod(3493,3744))
 

Basic properties

Modulus: \(3744\)
Conductor: \(416\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{416}(165,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3744.jy

\(\chi_{3744}(685,\cdot)\) \(\chi_{3744}(757,\cdot)\) \(\chi_{3744}(1621,\cdot)\) \(\chi_{3744}(1693,\cdot)\) \(\chi_{3744}(2557,\cdot)\) \(\chi_{3744}(2629,\cdot)\) \(\chi_{3744}(3493,\cdot)\) \(\chi_{3744}(3565,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((703,2341,2081,2017)\) → \((1,e\left(\frac{1}{8}\right),1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3744 }(3493, a) \) \(1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(i\)\(e\left(\frac{1}{24}\right)\)\(1\)\(e\left(\frac{17}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3744 }(3493,a) \;\) at \(\;a = \) e.g. 2