Properties

Label 3744.2941
Modulus $3744$
Conductor $3744$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3744, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,9,16,8]))
 
Copy content pari:[g,chi] = znchar(Mod(2941,3744))
 

Basic properties

Modulus: \(3744\)
Conductor: \(3744\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3744.jt

\(\chi_{3744}(133,\cdot)\) \(\chi_{3744}(373,\cdot)\) \(\chi_{3744}(1069,\cdot)\) \(\chi_{3744}(1309,\cdot)\) \(\chi_{3744}(2005,\cdot)\) \(\chi_{3744}(2245,\cdot)\) \(\chi_{3744}(2941,\cdot)\) \(\chi_{3744}(3181,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((703,2341,2081,2017)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{2}{3}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3744 }(2941, a) \) \(1\)\(1\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{19}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3744 }(2941,a) \;\) at \(\;a = \) e.g. 2