sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(373527, base_ring=CyclotomicField(16170))
M = H._module
chi = DirichletCharacter(H, M([2695,10670,147]))
pari:[g,chi] = znchar(Mod(2,373527))
| Modulus: | \(373527\) | |
| Conductor: | \(373527\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(16170\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{373527}(2,\cdot)\)
\(\chi_{373527}(95,\cdot)\)
\(\chi_{373527}(347,\cdot)\)
\(\chi_{373527}(380,\cdot)\)
\(\chi_{373527}(536,\cdot)\)
\(\chi_{373527}(662,\cdot)\)
\(\chi_{373527}(695,\cdot)\)
\(\chi_{373527}(788,\cdot)\)
\(\chi_{373527}(821,\cdot)\)
\(\chi_{373527}(1040,\cdot)\)
\(\chi_{373527}(1073,\cdot)\)
\(\chi_{373527}(1229,\cdot)\)
\(\chi_{373527}(1262,\cdot)\)
\(\chi_{373527}(1355,\cdot)\)
\(\chi_{373527}(1388,\cdot)\)
\(\chi_{373527}(1481,\cdot)\)
\(\chi_{373527}(1514,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((290522,286408,126568)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{97}{147}\right),e\left(\frac{1}{110}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 373527 }(2, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1531}{8085}\right)\) | \(e\left(\frac{3062}{8085}\right)\) | \(e\left(\frac{3461}{5390}\right)\) | \(e\left(\frac{1531}{2695}\right)\) | \(e\left(\frac{2689}{3234}\right)\) | \(e\left(\frac{5057}{16170}\right)\) | \(e\left(\frac{6124}{8085}\right)\) | \(e\left(\frac{3574}{8085}\right)\) | \(e\left(\frac{139}{330}\right)\) | \(e\left(\frac{337}{16170}\right)\) |
sage:chi.jacobi_sum(n)