Properties

Label 373527.15286
Modulus $373527$
Conductor $33957$
Order $1470$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(373527, base_ring=CyclotomicField(1470)) M = H._module chi = DirichletCharacter(H, M([490,655,1029]))
 
Copy content pari:[g,chi] = znchar(Mod(15286,373527))
 

Basic properties

Modulus: \(373527\)
Conductor: \(33957\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1470\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{33957}(15286,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 373527.oe

\(\chi_{373527}(40,\cdot)\) \(\chi_{373527}(481,\cdot)\) \(\chi_{373527}(1564,\cdot)\) \(\chi_{373527}(2635,\cdot)\) \(\chi_{373527}(3379,\cdot)\) \(\chi_{373527}(4450,\cdot)\) \(\chi_{373527}(5848,\cdot)\) \(\chi_{373527}(6289,\cdot)\) \(\chi_{373527}(9187,\cdot)\) \(\chi_{373527}(10258,\cdot)\) \(\chi_{373527}(11002,\cdot)\) \(\chi_{373527}(13471,\cdot)\) \(\chi_{373527}(13912,\cdot)\) \(\chi_{373527}(15286,\cdot)\) \(\chi_{373527}(15727,\cdot)\) \(\chi_{373527}(16810,\cdot)\) \(\chi_{373527}(17881,\cdot)\) \(\chi_{373527}(18625,\cdot)\) \(\chi_{373527}(19696,\cdot)\) \(\chi_{373527}(21094,\cdot)\) \(\chi_{373527}(21535,\cdot)\) \(\chi_{373527}(22909,\cdot)\) \(\chi_{373527}(23350,\cdot)\) \(\chi_{373527}(25504,\cdot)\) \(\chi_{373527}(26248,\cdot)\) \(\chi_{373527}(27319,\cdot)\) \(\chi_{373527}(28717,\cdot)\) \(\chi_{373527}(29158,\cdot)\) \(\chi_{373527}(30532,\cdot)\) \(\chi_{373527}(30973,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{735})$
Fixed field: Number field defined by a degree 1470 polynomial (not computed)

Values on generators

\((290522,286408,126568)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{131}{294}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 373527 }(15286, a) \) \(1\)\(1\)\(e\left(\frac{233}{490}\right)\)\(e\left(\frac{233}{245}\right)\)\(e\left(\frac{571}{1470}\right)\)\(e\left(\frac{209}{490}\right)\)\(e\left(\frac{127}{147}\right)\)\(e\left(\frac{262}{735}\right)\)\(e\left(\frac{221}{245}\right)\)\(e\left(\frac{323}{735}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{499}{1470}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 373527 }(15286,a) \;\) at \(\;a = \) e.g. 2