sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(373527, base_ring=CyclotomicField(16170))
M = H._module
chi = DirichletCharacter(H, M([5390,2750,6762]))
pari:[g,chi] = znchar(Mod(1318,373527))
| Modulus: | \(373527\) | |
| Conductor: | \(373527\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(8085\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{373527}(25,\cdot)\)
\(\chi_{373527}(58,\cdot)\)
\(\chi_{373527}(247,\cdot)\)
\(\chi_{373527}(466,\cdot)\)
\(\chi_{373527}(499,\cdot)\)
\(\chi_{373527}(592,\cdot)\)
\(\chi_{373527}(625,\cdot)\)
\(\chi_{373527}(718,\cdot)\)
\(\chi_{373527}(751,\cdot)\)
\(\chi_{373527}(907,\cdot)\)
\(\chi_{373527}(940,\cdot)\)
\(\chi_{373527}(1159,\cdot)\)
\(\chi_{373527}(1192,\cdot)\)
\(\chi_{373527}(1285,\cdot)\)
\(\chi_{373527}(1318,\cdot)\)
\(\chi_{373527}(1411,\cdot)\)
\(\chi_{373527}(1444,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((290522,286408,126568)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{25}{147}\right),e\left(\frac{23}{55}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 373527 }(1318, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2007}{2695}\right)\) | \(e\left(\frac{1319}{2695}\right)\) | \(e\left(\frac{4399}{8085}\right)\) | \(e\left(\frac{631}{2695}\right)\) | \(e\left(\frac{467}{1617}\right)\) | \(e\left(\frac{3011}{8085}\right)\) | \(e\left(\frac{2638}{2695}\right)\) | \(e\left(\frac{6004}{8085}\right)\) | \(e\left(\frac{62}{165}\right)\) | \(e\left(\frac{271}{8085}\right)\) |
sage:chi.jacobi_sum(n)