sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(373527, base_ring=CyclotomicField(3234))
M = H._module
chi = DirichletCharacter(H, M([2695,2750,735]))
pari:[g,chi] = znchar(Mod(12506,373527))
| Modulus: | \(373527\) | |
| Conductor: | \(373527\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(3234\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{373527}(32,\cdot)\)
\(\chi_{373527}(65,\cdot)\)
\(\chi_{373527}(758,\cdot)\)
\(\chi_{373527}(1418,\cdot)\)
\(\chi_{373527}(2111,\cdot)\)
\(\chi_{373527}(2144,\cdot)\)
\(\chi_{373527}(2804,\cdot)\)
\(\chi_{373527}(2837,\cdot)\)
\(\chi_{373527}(3530,\cdot)\)
\(\chi_{373527}(4190,\cdot)\)
\(\chi_{373527}(4223,\cdot)\)
\(\chi_{373527}(4883,\cdot)\)
\(\chi_{373527}(4916,\cdot)\)
\(\chi_{373527}(5576,\cdot)\)
\(\chi_{373527}(5609,\cdot)\)
\(\chi_{373527}(6269,\cdot)\)
\(\chi_{373527}(6962,\cdot)\)
\(\chi_{373527}(6995,\cdot)\)
\(\chi_{373527}(7655,\cdot)\)
\(\chi_{373527}(7688,\cdot)\)
\(\chi_{373527}(8381,\cdot)\)
\(\chi_{373527}(9041,\cdot)\)
\(\chi_{373527}(9734,\cdot)\)
\(\chi_{373527}(9767,\cdot)\)
\(\chi_{373527}(10427,\cdot)\)
\(\chi_{373527}(10460,\cdot)\)
\(\chi_{373527}(11120,\cdot)\)
\(\chi_{373527}(11813,\cdot)\)
\(\chi_{373527}(11846,\cdot)\)
\(\chi_{373527}(12506,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((290522,286408,126568)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{125}{147}\right),e\left(\frac{5}{22}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 373527 }(12506, a) \) |
\(1\) | \(1\) | \(e\left(\frac{43}{1617}\right)\) | \(e\left(\frac{86}{1617}\right)\) | \(e\left(\frac{695}{1078}\right)\) | \(e\left(\frac{43}{539}\right)\) | \(e\left(\frac{2171}{3234}\right)\) | \(e\left(\frac{3131}{3234}\right)\) | \(e\left(\frac{172}{1617}\right)\) | \(e\left(\frac{1447}{1617}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{2257}{3234}\right)\) |
sage:chi.jacobi_sum(n)