Properties

Label 373527.12506
Modulus $373527$
Conductor $373527$
Order $3234$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(373527, base_ring=CyclotomicField(3234)) M = H._module chi = DirichletCharacter(H, M([2695,2750,735]))
 
Copy content pari:[g,chi] = znchar(Mod(12506,373527))
 

Basic properties

Modulus: \(373527\)
Conductor: \(373527\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(3234\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 373527.qd

\(\chi_{373527}(32,\cdot)\) \(\chi_{373527}(65,\cdot)\) \(\chi_{373527}(758,\cdot)\) \(\chi_{373527}(1418,\cdot)\) \(\chi_{373527}(2111,\cdot)\) \(\chi_{373527}(2144,\cdot)\) \(\chi_{373527}(2804,\cdot)\) \(\chi_{373527}(2837,\cdot)\) \(\chi_{373527}(3530,\cdot)\) \(\chi_{373527}(4190,\cdot)\) \(\chi_{373527}(4223,\cdot)\) \(\chi_{373527}(4883,\cdot)\) \(\chi_{373527}(4916,\cdot)\) \(\chi_{373527}(5576,\cdot)\) \(\chi_{373527}(5609,\cdot)\) \(\chi_{373527}(6269,\cdot)\) \(\chi_{373527}(6962,\cdot)\) \(\chi_{373527}(6995,\cdot)\) \(\chi_{373527}(7655,\cdot)\) \(\chi_{373527}(7688,\cdot)\) \(\chi_{373527}(8381,\cdot)\) \(\chi_{373527}(9041,\cdot)\) \(\chi_{373527}(9734,\cdot)\) \(\chi_{373527}(9767,\cdot)\) \(\chi_{373527}(10427,\cdot)\) \(\chi_{373527}(10460,\cdot)\) \(\chi_{373527}(11120,\cdot)\) \(\chi_{373527}(11813,\cdot)\) \(\chi_{373527}(11846,\cdot)\) \(\chi_{373527}(12506,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1617})$
Fixed field: Number field defined by a degree 3234 polynomial (not computed)

Values on generators

\((290522,286408,126568)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{125}{147}\right),e\left(\frac{5}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 373527 }(12506, a) \) \(1\)\(1\)\(e\left(\frac{43}{1617}\right)\)\(e\left(\frac{86}{1617}\right)\)\(e\left(\frac{695}{1078}\right)\)\(e\left(\frac{43}{539}\right)\)\(e\left(\frac{2171}{3234}\right)\)\(e\left(\frac{3131}{3234}\right)\)\(e\left(\frac{172}{1617}\right)\)\(e\left(\frac{1447}{1617}\right)\)\(e\left(\frac{13}{66}\right)\)\(e\left(\frac{2257}{3234}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 373527 }(12506,a) \;\) at \(\;a = \) e.g. 2