Properties

Label 3724.911
Modulus $3724$
Conductor $3724$
Order $14$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3724, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,6,7]))
 
Copy content pari:[g,chi] = znchar(Mod(911,3724))
 

Basic properties

Modulus: \(3724\)
Conductor: \(3724\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3724.bs

\(\chi_{3724}(379,\cdot)\) \(\chi_{3724}(911,\cdot)\) \(\chi_{3724}(1443,\cdot)\) \(\chi_{3724}(1975,\cdot)\) \(\chi_{3724}(2507,\cdot)\) \(\chi_{3724}(3571,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\((1863,3041,3137)\) → \((-1,e\left(\frac{3}{7}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 3724 }(911, a) \) \(1\)\(1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{2}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3724 }(911,a) \;\) at \(\;a = \) e.g. 2