Properties

Label 3724.3137
Modulus $3724$
Conductor $19$
Order $18$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3724, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,0,1]))
 
Copy content pari:[g,chi] = znchar(Mod(3137,3724))
 

Basic properties

Modulus: \(3724\)
Conductor: \(19\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{19}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3724.ch

\(\chi_{3724}(393,\cdot)\) \(\chi_{3724}(2157,\cdot)\) \(\chi_{3724}(2549,\cdot)\) \(\chi_{3724}(2941,\cdot)\) \(\chi_{3724}(3137,\cdot)\) \(\chi_{3724}(3529,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1863,3041,3137)\) → \((1,1,e\left(\frac{1}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 3724 }(3137, a) \) \(-1\)\(1\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3724 }(3137,a) \;\) at \(\;a = \) e.g. 2