sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,108,91]))
pari:[g,chi] = znchar(Mod(155,3724))
Modulus: | \(3724\) | |
Conductor: | \(3724\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3724}(15,\cdot)\)
\(\chi_{3724}(71,\cdot)\)
\(\chi_{3724}(127,\cdot)\)
\(\chi_{3724}(155,\cdot)\)
\(\chi_{3724}(211,\cdot)\)
\(\chi_{3724}(547,\cdot)\)
\(\chi_{3724}(603,\cdot)\)
\(\chi_{3724}(659,\cdot)\)
\(\chi_{3724}(743,\cdot)\)
\(\chi_{3724}(827,\cdot)\)
\(\chi_{3724}(1135,\cdot)\)
\(\chi_{3724}(1191,\cdot)\)
\(\chi_{3724}(1219,\cdot)\)
\(\chi_{3724}(1359,\cdot)\)
\(\chi_{3724}(1611,\cdot)\)
\(\chi_{3724}(1723,\cdot)\)
\(\chi_{3724}(1751,\cdot)\)
\(\chi_{3724}(1807,\cdot)\)
\(\chi_{3724}(1891,\cdot)\)
\(\chi_{3724}(2143,\cdot)\)
\(\chi_{3724}(2199,\cdot)\)
\(\chi_{3724}(2283,\cdot)\)
\(\chi_{3724}(2339,\cdot)\)
\(\chi_{3724}(2423,\cdot)\)
\(\chi_{3724}(2675,\cdot)\)
\(\chi_{3724}(2731,\cdot)\)
\(\chi_{3724}(2787,\cdot)\)
\(\chi_{3724}(2815,\cdot)\)
\(\chi_{3724}(2871,\cdot)\)
\(\chi_{3724}(2955,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3041,3137)\) → \((-1,e\left(\frac{6}{7}\right),e\left(\frac{13}{18}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 3724 }(155, a) \) |
\(1\) | \(1\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{31}{63}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{113}{126}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{5}{21}\right)\) |
sage:chi.jacobi_sum(n)