sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,120,77]))
pari:[g,chi] = znchar(Mod(1383,3724))
Modulus: | \(3724\) | |
Conductor: | \(3724\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3724}(135,\cdot)\)
\(\chi_{3724}(319,\cdot)\)
\(\chi_{3724}(431,\cdot)\)
\(\chi_{3724}(527,\cdot)\)
\(\chi_{3724}(599,\cdot)\)
\(\chi_{3724}(611,\cdot)\)
\(\chi_{3724}(963,\cdot)\)
\(\chi_{3724}(1131,\cdot)\)
\(\chi_{3724}(1143,\cdot)\)
\(\chi_{3724}(1199,\cdot)\)
\(\chi_{3724}(1383,\cdot)\)
\(\chi_{3724}(1495,\cdot)\)
\(\chi_{3724}(1591,\cdot)\)
\(\chi_{3724}(1663,\cdot)\)
\(\chi_{3724}(1675,\cdot)\)
\(\chi_{3724}(1731,\cdot)\)
\(\chi_{3724}(1915,\cdot)\)
\(\chi_{3724}(2123,\cdot)\)
\(\chi_{3724}(2195,\cdot)\)
\(\chi_{3724}(2207,\cdot)\)
\(\chi_{3724}(2263,\cdot)\)
\(\chi_{3724}(2447,\cdot)\)
\(\chi_{3724}(2559,\cdot)\)
\(\chi_{3724}(2655,\cdot)\)
\(\chi_{3724}(2727,\cdot)\)
\(\chi_{3724}(2739,\cdot)\)
\(\chi_{3724}(2795,\cdot)\)
\(\chi_{3724}(2979,\cdot)\)
\(\chi_{3724}(3091,\cdot)\)
\(\chi_{3724}(3187,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3041,3137)\) → \((-1,e\left(\frac{20}{21}\right),e\left(\frac{11}{18}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 3724 }(1383, a) \) |
\(1\) | \(1\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{4}{21}\right)\) |
sage:chi.jacobi_sum(n)