L(s) = 1 | + (−0.797 + 0.603i)3-s + (−0.797 + 0.603i)5-s + (0.270 − 0.962i)9-s + (0.900 − 0.433i)11-s + (−0.995 + 0.0995i)13-s + (0.270 − 0.962i)15-s + (0.878 − 0.478i)17-s + (0.853 − 0.521i)23-s + (0.270 − 0.962i)25-s + (0.365 + 0.930i)27-s + (−0.980 − 0.198i)29-s + (−0.5 + 0.866i)31-s + (−0.456 + 0.889i)33-s + (0.988 − 0.149i)37-s + (0.733 − 0.680i)39-s + ⋯ |
L(s) = 1 | + (−0.797 + 0.603i)3-s + (−0.797 + 0.603i)5-s + (0.270 − 0.962i)9-s + (0.900 − 0.433i)11-s + (−0.995 + 0.0995i)13-s + (0.270 − 0.962i)15-s + (0.878 − 0.478i)17-s + (0.853 − 0.521i)23-s + (0.270 − 0.962i)25-s + (0.365 + 0.930i)27-s + (−0.980 − 0.198i)29-s + (−0.5 + 0.866i)31-s + (−0.456 + 0.889i)33-s + (0.988 − 0.149i)37-s + (0.733 − 0.680i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.780 - 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.780 - 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7416341649 - 0.2607018427i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7416341649 - 0.2607018427i\) |
\(L(1)\) |
\(\approx\) |
\(0.7077989931 + 0.1039959794i\) |
\(L(1)\) |
\(\approx\) |
\(0.7077989931 + 0.1039959794i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.797 + 0.603i)T \) |
| 5 | \( 1 + (-0.797 + 0.603i)T \) |
| 11 | \( 1 + (0.900 - 0.433i)T \) |
| 13 | \( 1 + (-0.995 + 0.0995i)T \) |
| 17 | \( 1 + (0.878 - 0.478i)T \) |
| 23 | \( 1 + (0.853 - 0.521i)T \) |
| 29 | \( 1 + (-0.980 - 0.198i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.988 - 0.149i)T \) |
| 41 | \( 1 + (0.124 + 0.992i)T \) |
| 43 | \( 1 + (0.998 - 0.0498i)T \) |
| 47 | \( 1 + (0.583 + 0.811i)T \) |
| 53 | \( 1 + (0.0249 + 0.999i)T \) |
| 59 | \( 1 + (-0.998 + 0.0498i)T \) |
| 61 | \( 1 + (-0.318 - 0.947i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.661 - 0.749i)T \) |
| 73 | \( 1 + (-0.411 - 0.911i)T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (-0.0747 - 0.997i)T \) |
| 89 | \( 1 + (0.969 - 0.246i)T \) |
| 97 | \( 1 + (-0.766 - 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.97973965391359628491765049465, −17.888593751075064498146505199091, −17.14567211360320662897615513371, −16.81461526510121507856945468642, −16.24322088840547849928507116661, −15.14100719760269135500596426040, −14.8050157035329200470865879153, −13.77628381067831151819908249312, −12.797409523171638894852167553875, −12.56423061555540902232413758999, −11.77193185175403561452153511452, −11.37229472252893573825933856070, −10.48313735965504363532860013686, −9.578553963842926024420549879557, −8.93494498746866594603978902684, −7.85490719575973389505125161420, −7.43353483544566790593588991420, −6.84264739360689955682045089746, −5.723320276304186289863233158819, −5.28813603237972082059248929331, −4.340886688861583428273507380217, −3.77800391371619131909231750102, −2.53940481679556443996524294868, −1.53817654799440637288381614618, −0.84380568785887187723541843026,
0.35201679587756031078018264636, 1.3634689470170704443094530892, 2.84505564271783426222954438356, 3.35667253158568668651684146854, 4.31442065287004605871815233495, 4.768328631349880227553557070933, 5.81662971256327499726084741779, 6.40713763155389344367377347314, 7.29840733509414377125099138224, 7.72485890322147248847937411092, 9.08532540339562862699398148252, 9.38025288535194640134761009049, 10.42997268797101065423849786808, 10.919372326006478594899861515618, 11.61365594682387283143769053843, 12.142605785795135707341289563558, 12.72862623365080978601303542238, 14.00224602095712280807796985625, 14.72546609954822598045908086364, 14.966872640926832437975960784975, 15.95996883804828411740408058594, 16.545156049400409741017007234550, 16.98560798071770336201296762105, 17.81705908952320298014813080837, 18.61227958307462831756671099511