sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,45,14]))
pari:[g,chi] = znchar(Mod(1315,3724))
Modulus: | \(3724\) | |
Conductor: | \(3724\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3724}(55,\cdot)\)
\(\chi_{3724}(111,\cdot)\)
\(\chi_{3724}(139,\cdot)\)
\(\chi_{3724}(251,\cdot)\)
\(\chi_{3724}(503,\cdot)\)
\(\chi_{3724}(643,\cdot)\)
\(\chi_{3724}(671,\cdot)\)
\(\chi_{3724}(727,\cdot)\)
\(\chi_{3724}(1035,\cdot)\)
\(\chi_{3724}(1119,\cdot)\)
\(\chi_{3724}(1203,\cdot)\)
\(\chi_{3724}(1259,\cdot)\)
\(\chi_{3724}(1315,\cdot)\)
\(\chi_{3724}(1651,\cdot)\)
\(\chi_{3724}(1707,\cdot)\)
\(\chi_{3724}(1735,\cdot)\)
\(\chi_{3724}(1791,\cdot)\)
\(\chi_{3724}(1847,\cdot)\)
\(\chi_{3724}(2099,\cdot)\)
\(\chi_{3724}(2183,\cdot)\)
\(\chi_{3724}(2239,\cdot)\)
\(\chi_{3724}(2267,\cdot)\)
\(\chi_{3724}(2323,\cdot)\)
\(\chi_{3724}(2379,\cdot)\)
\(\chi_{3724}(2631,\cdot)\)
\(\chi_{3724}(2715,\cdot)\)
\(\chi_{3724}(2771,\cdot)\)
\(\chi_{3724}(2799,\cdot)\)
\(\chi_{3724}(2855,\cdot)\)
\(\chi_{3724}(2911,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3041,3137)\) → \((-1,e\left(\frac{5}{14}\right),e\left(\frac{1}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 3724 }(1315, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{43}{126}\right)\) | \(e\left(\frac{55}{126}\right)\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{19}{21}\right)\) |
sage:chi.jacobi_sum(n)