L(s) = 1 | + (−0.318 + 0.947i)3-s + (0.661 + 0.749i)5-s + (−0.797 − 0.603i)9-s + (0.733 + 0.680i)11-s + (−0.542 + 0.840i)13-s + (−0.921 + 0.388i)15-s + (0.969 + 0.246i)17-s + (−0.270 + 0.962i)23-s + (−0.124 + 0.992i)25-s + (0.826 − 0.563i)27-s + (−0.411 + 0.911i)29-s + (−0.5 − 0.866i)31-s + (−0.878 + 0.478i)33-s + (−0.900 + 0.433i)37-s + (−0.623 − 0.781i)39-s + ⋯ |
L(s) = 1 | + (−0.318 + 0.947i)3-s + (0.661 + 0.749i)5-s + (−0.797 − 0.603i)9-s + (0.733 + 0.680i)11-s + (−0.542 + 0.840i)13-s + (−0.921 + 0.388i)15-s + (0.969 + 0.246i)17-s + (−0.270 + 0.962i)23-s + (−0.124 + 0.992i)25-s + (0.826 − 0.563i)27-s + (−0.411 + 0.911i)29-s + (−0.5 − 0.866i)31-s + (−0.878 + 0.478i)33-s + (−0.900 + 0.433i)37-s + (−0.623 − 0.781i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.982 - 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.982 - 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1251784223 + 1.320775738i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.1251784223 + 1.320775738i\) |
\(L(1)\) |
\(\approx\) |
\(0.8040923413 + 0.6227366180i\) |
\(L(1)\) |
\(\approx\) |
\(0.8040923413 + 0.6227366180i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.318 + 0.947i)T \) |
| 5 | \( 1 + (0.661 + 0.749i)T \) |
| 11 | \( 1 + (0.733 + 0.680i)T \) |
| 13 | \( 1 + (-0.542 + 0.840i)T \) |
| 17 | \( 1 + (0.969 + 0.246i)T \) |
| 23 | \( 1 + (-0.270 + 0.962i)T \) |
| 29 | \( 1 + (-0.411 + 0.911i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.900 + 0.433i)T \) |
| 41 | \( 1 + (0.318 - 0.947i)T \) |
| 43 | \( 1 + (-0.878 + 0.478i)T \) |
| 47 | \( 1 + (0.456 + 0.889i)T \) |
| 53 | \( 1 + (0.270 - 0.962i)T \) |
| 59 | \( 1 + (-0.0249 + 0.999i)T \) |
| 61 | \( 1 + (0.583 + 0.811i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + (0.583 - 0.811i)T \) |
| 73 | \( 1 + (-0.542 - 0.840i)T \) |
| 79 | \( 1 + (0.939 - 0.342i)T \) |
| 83 | \( 1 + (-0.733 + 0.680i)T \) |
| 89 | \( 1 + (0.124 - 0.992i)T \) |
| 97 | \( 1 + (-0.766 - 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.25428842279234543037167854003, −17.532880562854070230853822278028, −16.84962425190899321719763747529, −16.63501410223946993330313495451, −15.64659917791375089795563216517, −14.49055973399795852888551869622, −14.110895093196511005218949971908, −13.37128776321248941170974558810, −12.66437254623726579523559568264, −12.21051781733178181554344016824, −11.55391222505187949591578279918, −10.592683936234838633406646183, −9.93163607914863456846169271864, −9.02714289859543480393926805835, −8.37022280425240519401715439171, −7.756335633896422924490983031006, −6.83871599284589135782940168001, −6.14085714023302239360536101643, −5.46827248657531786744590463124, −4.972728079415221609416771562349, −3.75941661010745996829734783395, −2.805033899030820852323126526940, −1.975802629349698273087465117472, −1.143174776027320806120681795495, −0.40787820040796737881850061718,
1.415501847865278921038570567890, 2.1758634143271708127642851149, 3.25641533755427712772221180941, 3.80648017779494399984131753068, 4.68471836436932582832373188310, 5.50129737498663809165033046519, 6.07701390264498576907748649349, 6.95947102695465635353547672453, 7.512209096098744709821983126056, 8.82572227229972579307890047737, 9.3948893408858250007070836744, 9.96116537284956368401650976782, 10.47074426543445209190282776082, 11.41293596317352887105788466189, 11.83944356234856215997045086373, 12.67951804818217109129895821718, 13.76693989528989115981323005822, 14.3608203319921577418825295377, 14.85001697690647092358526911381, 15.40146489894584679754219564978, 16.50344363518304421057410279483, 16.82261684950155567935421384262, 17.58546753394421141362743549360, 18.07564098630821964484408273799, 19.07737302226107144118659636902