Properties

Label 3724.1223
Modulus $3724$
Conductor $3724$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3724, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([21,5,14]))
 
Copy content pari:[g,chi] = znchar(Mod(1223,3724))
 

Basic properties

Modulus: \(3724\)
Conductor: \(3724\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3724.du

\(\chi_{3724}(87,\cdot)\) \(\chi_{3724}(159,\cdot)\) \(\chi_{3724}(691,\cdot)\) \(\chi_{3724}(1151,\cdot)\) \(\chi_{3724}(1223,\cdot)\) \(\chi_{3724}(1683,\cdot)\) \(\chi_{3724}(1755,\cdot)\) \(\chi_{3724}(2215,\cdot)\) \(\chi_{3724}(2287,\cdot)\) \(\chi_{3724}(2747,\cdot)\) \(\chi_{3724}(2819,\cdot)\) \(\chi_{3724}(3279,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((1863,3041,3137)\) → \((-1,e\left(\frac{5}{42}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 3724 }(1223, a) \) \(1\)\(1\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{6}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3724 }(1223,a) \;\) at \(\;a = \) e.g. 2