Properties

Label 3696.925
Modulus $3696$
Conductor $16$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3696, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,3,0,0,0]))
 
Copy content pari:[g,chi] = znchar(Mod(925,3696))
 

Basic properties

Modulus: \(3696\)
Conductor: \(16\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{16}(13,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3696.bs

\(\chi_{3696}(925,\cdot)\) \(\chi_{3696}(2773,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: \(\Q(\zeta_{16})^+\)

Values on generators

\((463,2773,2465,1585,673)\) → \((1,-i,1,1,1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3696 }(925, a) \) \(1\)\(1\)\(-i\)\(i\)\(1\)\(i\)\(-1\)\(-1\)\(i\)\(1\)\(-i\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3696 }(925,a) \;\) at \(\;a = \) e.g. 2