sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3675, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([70,7,120]))
pari:[g,chi] = znchar(Mod(302,3675))
Modulus: | \(3675\) | |
Conductor: | \(3675\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(140\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3675}(8,\cdot)\)
\(\chi_{3675}(92,\cdot)\)
\(\chi_{3675}(113,\cdot)\)
\(\chi_{3675}(302,\cdot)\)
\(\chi_{3675}(323,\cdot)\)
\(\chi_{3675}(428,\cdot)\)
\(\chi_{3675}(512,\cdot)\)
\(\chi_{3675}(533,\cdot)\)
\(\chi_{3675}(617,\cdot)\)
\(\chi_{3675}(722,\cdot)\)
\(\chi_{3675}(827,\cdot)\)
\(\chi_{3675}(848,\cdot)\)
\(\chi_{3675}(953,\cdot)\)
\(\chi_{3675}(1037,\cdot)\)
\(\chi_{3675}(1058,\cdot)\)
\(\chi_{3675}(1142,\cdot)\)
\(\chi_{3675}(1163,\cdot)\)
\(\chi_{3675}(1247,\cdot)\)
\(\chi_{3675}(1352,\cdot)\)
\(\chi_{3675}(1478,\cdot)\)
\(\chi_{3675}(1562,\cdot)\)
\(\chi_{3675}(1583,\cdot)\)
\(\chi_{3675}(1688,\cdot)\)
\(\chi_{3675}(1772,\cdot)\)
\(\chi_{3675}(1877,\cdot)\)
\(\chi_{3675}(1898,\cdot)\)
\(\chi_{3675}(2003,\cdot)\)
\(\chi_{3675}(2087,\cdot)\)
\(\chi_{3675}(2192,\cdot)\)
\(\chi_{3675}(2213,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,1177,2551)\) → \((-1,e\left(\frac{1}{20}\right),e\left(\frac{6}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 3675 }(302, a) \) |
\(1\) | \(1\) | \(e\left(\frac{117}{140}\right)\) | \(e\left(\frac{47}{70}\right)\) | \(e\left(\frac{71}{140}\right)\) | \(e\left(\frac{41}{70}\right)\) | \(e\left(\frac{33}{140}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{81}{140}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{59}{140}\right)\) | \(e\left(\frac{87}{140}\right)\) |
sage:chi.jacobi_sum(n)