sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3648, base_ring=CyclotomicField(144))
M = H._module
chi = DirichletCharacter(H, M([72,27,72,8]))
pari:[g,chi] = znchar(Mod(515,3648))
Modulus: | \(3648\) | |
Conductor: | \(3648\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(144\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3648}(59,\cdot)\)
\(\chi_{3648}(155,\cdot)\)
\(\chi_{3648}(203,\cdot)\)
\(\chi_{3648}(299,\cdot)\)
\(\chi_{3648}(371,\cdot)\)
\(\chi_{3648}(395,\cdot)\)
\(\chi_{3648}(515,\cdot)\)
\(\chi_{3648}(611,\cdot)\)
\(\chi_{3648}(659,\cdot)\)
\(\chi_{3648}(755,\cdot)\)
\(\chi_{3648}(827,\cdot)\)
\(\chi_{3648}(851,\cdot)\)
\(\chi_{3648}(971,\cdot)\)
\(\chi_{3648}(1067,\cdot)\)
\(\chi_{3648}(1115,\cdot)\)
\(\chi_{3648}(1211,\cdot)\)
\(\chi_{3648}(1283,\cdot)\)
\(\chi_{3648}(1307,\cdot)\)
\(\chi_{3648}(1427,\cdot)\)
\(\chi_{3648}(1523,\cdot)\)
\(\chi_{3648}(1571,\cdot)\)
\(\chi_{3648}(1667,\cdot)\)
\(\chi_{3648}(1739,\cdot)\)
\(\chi_{3648}(1763,\cdot)\)
\(\chi_{3648}(1883,\cdot)\)
\(\chi_{3648}(1979,\cdot)\)
\(\chi_{3648}(2027,\cdot)\)
\(\chi_{3648}(2123,\cdot)\)
\(\chi_{3648}(2195,\cdot)\)
\(\chi_{3648}(2219,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2623,2053,1217,1921)\) → \((-1,e\left(\frac{3}{16}\right),-1,e\left(\frac{1}{18}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 3648 }(515, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{13}{144}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{73}{144}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{41}{144}\right)\) |
sage:chi.jacobi_sum(n)