Properties

Label 3648.2227
Modulus $3648$
Conductor $1216$
Order $144$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3648, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([72,135,0,16]))
 
Copy content pari:[g,chi] = znchar(Mod(2227,3648))
 

Basic properties

Modulus: \(3648\)
Conductor: \(1216\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(144\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1216}(1011,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3648.ej

\(\chi_{3648}(43,\cdot)\) \(\chi_{3648}(139,\cdot)\) \(\chi_{3648}(187,\cdot)\) \(\chi_{3648}(283,\cdot)\) \(\chi_{3648}(403,\cdot)\) \(\chi_{3648}(427,\cdot)\) \(\chi_{3648}(499,\cdot)\) \(\chi_{3648}(595,\cdot)\) \(\chi_{3648}(643,\cdot)\) \(\chi_{3648}(739,\cdot)\) \(\chi_{3648}(859,\cdot)\) \(\chi_{3648}(883,\cdot)\) \(\chi_{3648}(955,\cdot)\) \(\chi_{3648}(1051,\cdot)\) \(\chi_{3648}(1099,\cdot)\) \(\chi_{3648}(1195,\cdot)\) \(\chi_{3648}(1315,\cdot)\) \(\chi_{3648}(1339,\cdot)\) \(\chi_{3648}(1411,\cdot)\) \(\chi_{3648}(1507,\cdot)\) \(\chi_{3648}(1555,\cdot)\) \(\chi_{3648}(1651,\cdot)\) \(\chi_{3648}(1771,\cdot)\) \(\chi_{3648}(1795,\cdot)\) \(\chi_{3648}(1867,\cdot)\) \(\chi_{3648}(1963,\cdot)\) \(\chi_{3648}(2011,\cdot)\) \(\chi_{3648}(2107,\cdot)\) \(\chi_{3648}(2227,\cdot)\) \(\chi_{3648}(2251,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

\((2623,2053,1217,1921)\) → \((-1,e\left(\frac{15}{16}\right),1,e\left(\frac{1}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3648 }(2227, a) \) \(-1\)\(1\)\(e\left(\frac{103}{144}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{25}{48}\right)\)\(e\left(\frac{89}{144}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{61}{72}\right)\)\(e\left(\frac{31}{72}\right)\)\(e\left(\frac{29}{144}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{37}{144}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3648 }(2227,a) \;\) at \(\;a = \) e.g. 2