Properties

Label 3645.766
Modulus $3645$
Conductor $243$
Order $81$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3645, base_ring=CyclotomicField(162)) M = H._module chi = DirichletCharacter(H, M([86,0]))
 
Copy content pari:[g,chi] = znchar(Mod(766,3645))
 

Basic properties

Modulus: \(3645\)
Conductor: \(243\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(81\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{243}(211,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3645.w

\(\chi_{3645}(46,\cdot)\) \(\chi_{3645}(91,\cdot)\) \(\chi_{3645}(181,\cdot)\) \(\chi_{3645}(226,\cdot)\) \(\chi_{3645}(316,\cdot)\) \(\chi_{3645}(361,\cdot)\) \(\chi_{3645}(451,\cdot)\) \(\chi_{3645}(496,\cdot)\) \(\chi_{3645}(586,\cdot)\) \(\chi_{3645}(631,\cdot)\) \(\chi_{3645}(721,\cdot)\) \(\chi_{3645}(766,\cdot)\) \(\chi_{3645}(856,\cdot)\) \(\chi_{3645}(901,\cdot)\) \(\chi_{3645}(991,\cdot)\) \(\chi_{3645}(1036,\cdot)\) \(\chi_{3645}(1126,\cdot)\) \(\chi_{3645}(1171,\cdot)\) \(\chi_{3645}(1261,\cdot)\) \(\chi_{3645}(1306,\cdot)\) \(\chi_{3645}(1396,\cdot)\) \(\chi_{3645}(1441,\cdot)\) \(\chi_{3645}(1531,\cdot)\) \(\chi_{3645}(1576,\cdot)\) \(\chi_{3645}(1666,\cdot)\) \(\chi_{3645}(1711,\cdot)\) \(\chi_{3645}(1801,\cdot)\) \(\chi_{3645}(1846,\cdot)\) \(\chi_{3645}(1936,\cdot)\) \(\chi_{3645}(1981,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{81})$
Fixed field: Number field defined by a degree 81 polynomial

Values on generators

\((731,2917)\) → \((e\left(\frac{43}{81}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 3645 }(766, a) \) \(1\)\(1\)\(e\left(\frac{43}{81}\right)\)\(e\left(\frac{5}{81}\right)\)\(e\left(\frac{13}{81}\right)\)\(e\left(\frac{16}{27}\right)\)\(e\left(\frac{19}{81}\right)\)\(e\left(\frac{20}{81}\right)\)\(e\left(\frac{56}{81}\right)\)\(e\left(\frac{10}{81}\right)\)\(e\left(\frac{14}{27}\right)\)\(e\left(\frac{22}{27}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3645 }(766,a) \;\) at \(\;a = \) e.g. 2