sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3645, base_ring=CyclotomicField(972))
M = H._module
chi = DirichletCharacter(H, M([698,729]))
pari:[g,chi] = znchar(Mod(263,3645))
| Modulus: | \(3645\) | |
| Conductor: | \(3645\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(972\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3645}(2,\cdot)\)
\(\chi_{3645}(23,\cdot)\)
\(\chi_{3645}(32,\cdot)\)
\(\chi_{3645}(38,\cdot)\)
\(\chi_{3645}(47,\cdot)\)
\(\chi_{3645}(68,\cdot)\)
\(\chi_{3645}(77,\cdot)\)
\(\chi_{3645}(83,\cdot)\)
\(\chi_{3645}(92,\cdot)\)
\(\chi_{3645}(113,\cdot)\)
\(\chi_{3645}(122,\cdot)\)
\(\chi_{3645}(128,\cdot)\)
\(\chi_{3645}(137,\cdot)\)
\(\chi_{3645}(158,\cdot)\)
\(\chi_{3645}(167,\cdot)\)
\(\chi_{3645}(173,\cdot)\)
\(\chi_{3645}(182,\cdot)\)
\(\chi_{3645}(203,\cdot)\)
\(\chi_{3645}(212,\cdot)\)
\(\chi_{3645}(218,\cdot)\)
\(\chi_{3645}(227,\cdot)\)
\(\chi_{3645}(248,\cdot)\)
\(\chi_{3645}(257,\cdot)\)
\(\chi_{3645}(263,\cdot)\)
\(\chi_{3645}(272,\cdot)\)
\(\chi_{3645}(293,\cdot)\)
\(\chi_{3645}(302,\cdot)\)
\(\chi_{3645}(308,\cdot)\)
\(\chi_{3645}(317,\cdot)\)
\(\chi_{3645}(338,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((731,2917)\) → \((e\left(\frac{349}{486}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 3645 }(263, a) \) |
\(1\) | \(1\) | \(e\left(\frac{455}{972}\right)\) | \(e\left(\frac{455}{486}\right)\) | \(e\left(\frac{665}{972}\right)\) | \(e\left(\frac{131}{324}\right)\) | \(e\left(\frac{109}{486}\right)\) | \(e\left(\frac{643}{972}\right)\) | \(e\left(\frac{37}{243}\right)\) | \(e\left(\frac{212}{243}\right)\) | \(e\left(\frac{145}{324}\right)\) | \(e\left(\frac{139}{162}\right)\) |
sage:chi.jacobi_sum(n)