Properties

Label 3536.421
Modulus $3536$
Conductor $3536$
Order $4$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3536, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,1,3,1]))
 
Copy content pari:[g,chi] = znchar(Mod(421,3536))
 

Basic properties

Modulus: \(3536\)
Conductor: \(3536\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3536.cm

\(\chi_{3536}(421,\cdot)\) \(\chi_{3536}(1789,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.0.22105827328.8

Values on generators

\((1327,885,3265,1873)\) → \((1,i,-i,i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(19\)\(21\)\(23\)\(25\)
\( \chi_{ 3536 }(421, a) \) \(-1\)\(1\)\(1\)\(i\)\(-1\)\(1\)\(i\)\(i\)\(1\)\(-1\)\(-i\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3536 }(421,a) \;\) at \(\;a = \) e.g. 2