Properties

Label 3536.3405
Modulus $3536$
Conductor $3536$
Order $16$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3536, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,12,8,5]))
 
Copy content pari:[g,chi] = znchar(Mod(3405,3536))
 

Basic properties

Modulus: \(3536\)
Conductor: \(3536\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3536.hy

\(\chi_{3536}(181,\cdot)\) \(\chi_{3536}(805,\cdot)\) \(\chi_{3536}(1013,\cdot)\) \(\chi_{3536}(1117,\cdot)\) \(\chi_{3536}(1533,\cdot)\) \(\chi_{3536}(2989,\cdot)\) \(\chi_{3536}(3405,\cdot)\) \(\chi_{3536}(3509,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.41077163661333146216005633381666283061248.1

Values on generators

\((1327,885,3265,1873)\) → \((1,-i,-1,e\left(\frac{5}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(19\)\(21\)\(23\)\(25\)
\( \chi_{ 3536 }(3405, a) \) \(-1\)\(1\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(1\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{5}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3536 }(3405,a) \;\) at \(\;a = \) e.g. 2