sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3536, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,12,8,5]))
pari:[g,chi] = znchar(Mod(3405,3536))
| Modulus: | \(3536\) | |
| Conductor: | \(3536\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(16\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3536}(181,\cdot)\)
\(\chi_{3536}(805,\cdot)\)
\(\chi_{3536}(1013,\cdot)\)
\(\chi_{3536}(1117,\cdot)\)
\(\chi_{3536}(1533,\cdot)\)
\(\chi_{3536}(2989,\cdot)\)
\(\chi_{3536}(3405,\cdot)\)
\(\chi_{3536}(3509,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1327,885,3265,1873)\) → \((1,-i,-1,e\left(\frac{5}{16}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(19\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 3536 }(3405, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) |
sage:chi.jacobi_sum(n)