Properties

Label 351.4
Modulus $351$
Conductor $351$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([2,3]))
 
Copy content pari:[g,chi] = znchar(Mod(4,351))
 

Basic properties

Modulus: \(351\)
Conductor: \(351\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 351.bn

\(\chi_{351}(4,\cdot)\) \(\chi_{351}(88,\cdot)\) \(\chi_{351}(121,\cdot)\) \(\chi_{351}(205,\cdot)\) \(\chi_{351}(238,\cdot)\) \(\chi_{351}(322,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((326,28)\) → \((e\left(\frac{1}{9}\right),e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 351 }(4, a) \) \(1\)\(1\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 351 }(4,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 351 }(4,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 351 }(4,·),\chi_{ 351 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 351 }(4,·)) \;\) at \(\; a,b = \) e.g. 1,2