Properties

Label 3503.cr
Modulus $3503$
Conductor $3503$
Order $280$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3503, base_ring=CyclotomicField(280)) M = H._module chi = DirichletCharacter(H, M([224,55])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(126,3503)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3503\)
Conductor: \(3503\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(280\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{280})$
Fixed field: Number field defined by a degree 280 polynomial (not computed)

First 31 of 96 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{3503}(126,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{279}{280}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{241}{280}\right)\) \(e\left(\frac{131}{140}\right)\)
\(\chi_{3503}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{277}{280}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{163}{280}\right)\) \(e\left(\frac{113}{140}\right)\)
\(\chi_{3503}(190,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{93}{280}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{267}{280}\right)\) \(e\left(\frac{137}{140}\right)\)
\(\chi_{3503}(252,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{253}{280}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{67}{280}\right)\) \(e\left(\frac{37}{140}\right)\)
\(\chi_{3503}(287,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{87}{280}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{33}{280}\right)\) \(e\left(\frac{83}{140}\right)\)
\(\chi_{3503}(314,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{163}{280}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{197}{280}\right)\) \(e\left(\frac{67}{140}\right)\)
\(\chi_{3503}(326,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{251}{280}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{269}{280}\right)\) \(e\left(\frac{19}{140}\right)\)
\(\chi_{3503}(380,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{67}{280}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{93}{280}\right)\) \(e\left(\frac{43}{140}\right)\)
\(\chi_{3503}(411,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{207}{280}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{233}{280}\right)\) \(e\left(\frac{43}{140}\right)\)
\(\chi_{3503}(504,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{227}{280}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{173}{280}\right)\) \(e\left(\frac{83}{140}\right)\)
\(\chi_{3503}(529,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{149}{280}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{211}{280}\right)\) \(e\left(\frac{81}{140}\right)\)
\(\chi_{3503}(543,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{131}{280}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{69}{280}\right)\) \(e\left(\frac{59}{140}\right)\)
\(\chi_{3503}(574,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{61}{280}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{139}{280}\right)\) \(e\left(\frac{129}{140}\right)\)
\(\chi_{3503}(591,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{29}{280}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{11}{280}\right)\) \(e\left(\frac{121}{140}\right)\)
\(\chi_{3503}(628,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{137}{280}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{23}{280}\right)\) \(e\left(\frac{113}{140}\right)\)
\(\chi_{3503}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{219}{280}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{141}{280}\right)\) \(e\left(\frac{11}{140}\right)\)
\(\chi_{3503}(667,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{101}{280}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{19}{280}\right)\) \(e\left(\frac{69}{140}\right)\)
\(\chi_{3503}(729,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{71}{280}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{249}{280}\right)\) \(e\left(\frac{79}{140}\right)\)
\(\chi_{3503}(760,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{41}{280}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{199}{280}\right)\) \(e\left(\frac{89}{140}\right)\)
\(\chi_{3503}(822,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{181}{280}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{59}{280}\right)\) \(e\left(\frac{89}{140}\right)\)
\(\chi_{3503}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{53}{280}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{107}{280}\right)\) \(e\left(\frac{57}{140}\right)\)
\(\chi_{3503}(853,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{211}{280}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{109}{280}\right)\) \(e\left(\frac{79}{140}\right)\)
\(\chi_{3503}(915,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{241}{280}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{159}{280}\right)\) \(e\left(\frac{69}{140}\right)\)
\(\chi_{3503}(965,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{143}{280}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{257}{280}\right)\) \(e\left(\frac{27}{140}\right)\)
\(\chi_{3503}(1008,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{201}{280}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{279}{280}\right)\) \(e\left(\frac{129}{140}\right)\)
\(\chi_{3503}(1039,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{271}{280}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{209}{280}\right)\) \(e\left(\frac{59}{140}\right)\)
\(\chi_{3503}(1058,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{123}{280}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{37}{280}\right)\) \(e\left(\frac{127}{140}\right)\)
\(\chi_{3503}(1089,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{263}{280}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{177}{280}\right)\) \(e\left(\frac{127}{140}\right)\)
\(\chi_{3503}(1155,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{247}{280}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{113}{280}\right)\) \(e\left(\frac{123}{140}\right)\)
\(\chi_{3503}(1180,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{109}{280}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{51}{280}\right)\) \(e\left(\frac{1}{140}\right)\)
\(\chi_{3503}(1182,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{3}{280}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{117}{280}\right)\) \(e\left(\frac{27}{140}\right)\)