sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3503, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([56,345]))
pari:[g,chi] = znchar(Mod(670,3503))
| Modulus: | \(3503\) | |
| Conductor: | \(3503\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3503}(14,\cdot)\)
\(\chi_{3503}(81,\cdot)\)
\(\chi_{3503}(111,\cdot)\)
\(\chi_{3503}(121,\cdot)\)
\(\chi_{3503}(169,\cdot)\)
\(\chi_{3503}(173,\cdot)\)
\(\chi_{3503}(224,\cdot)\)
\(\chi_{3503}(258,\cdot)\)
\(\chi_{3503}(286,\cdot)\)
\(\chi_{3503}(307,\cdot)\)
\(\chi_{3503}(392,\cdot)\)
\(\chi_{3503}(444,\cdot)\)
\(\chi_{3503}(454,\cdot)\)
\(\chi_{3503}(484,\cdot)\)
\(\chi_{3503}(505,\cdot)\)
\(\chi_{3503}(567,\cdot)\)
\(\chi_{3503}(670,\cdot)\)
\(\chi_{3503}(692,\cdot)\)
\(\chi_{3503}(710,\cdot)\)
\(\chi_{3503}(731,\cdot)\)
\(\chi_{3503}(789,\cdot)\)
\(\chi_{3503}(793,\cdot)\)
\(\chi_{3503}(844,\cdot)\)
\(\chi_{3503}(847,\cdot)\)
\(\chi_{3503}(851,\cdot)\)
\(\chi_{3503}(896,\cdot)\)
\(\chi_{3503}(906,\cdot)\)
\(\chi_{3503}(918,\cdot)\)
\(\chi_{3503}(1073,\cdot)\)
\(\chi_{3503}(1074,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3165,342)\) → \((e\left(\frac{2}{15}\right),e\left(\frac{23}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 3503 }(670, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{401}{420}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{32}{105}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{191}{210}\right)\) | \(e\left(\frac{379}{420}\right)\) | \(e\left(\frac{179}{210}\right)\) |
sage:chi.jacobi_sum(n)