sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3503, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([112,115]))
pari:[g,chi] = znchar(Mod(1800,3503))
| Modulus: | \(3503\) | |
| Conductor: | \(3503\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(140\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3503}(2,\cdot)\)
\(\chi_{3503}(8,\cdot)\)
\(\chi_{3503}(194,\cdot)\)
\(\chi_{3503}(283,\cdot)\)
\(\chi_{3503}(438,\cdot)\)
\(\chi_{3503}(450,\cdot)\)
\(\chi_{3503}(512,\cdot)\)
\(\chi_{3503}(597,\cdot)\)
\(\chi_{3503}(622,\cdot)\)
\(\chi_{3503}(686,\cdot)\)
\(\chi_{3503}(777,\cdot)\)
\(\chi_{3503}(783,\cdot)\)
\(\chi_{3503}(872,\cdot)\)
\(\chi_{3503}(1025,\cdot)\)
\(\chi_{3503}(1031,\cdot)\)
\(\chi_{3503}(1070,\cdot)\)
\(\chi_{3503}(1132,\cdot)\)
\(\chi_{3503}(1186,\cdot)\)
\(\chi_{3503}(1211,\cdot)\)
\(\chi_{3503}(1275,\cdot)\)
\(\chi_{3503}(1461,\cdot)\)
\(\chi_{3503}(1614,\cdot)\)
\(\chi_{3503}(1709,\cdot)\)
\(\chi_{3503}(1752,\cdot)\)
\(\chi_{3503}(1800,\cdot)\)
\(\chi_{3503}(1806,\cdot)\)
\(\chi_{3503}(1864,\cdot)\)
\(\chi_{3503}(1868,\cdot)\)
\(\chi_{3503}(1907,\cdot)\)
\(\chi_{3503}(2048,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3165,342)\) → \((e\left(\frac{4}{5}\right),e\left(\frac{23}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 3503 }(1800, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{87}{140}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{17}{70}\right)\) | \(e\left(\frac{33}{140}\right)\) | \(e\left(\frac{13}{70}\right)\) |
sage:chi.jacobi_sum(n)