sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3503, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([14,50]))
pari:[g,chi] = znchar(Mod(109,3503))
| Modulus: | \(3503\) | |
| Conductor: | \(3503\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(35\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3503}(16,\cdot)\)
\(\chi_{3503}(109,\cdot)\)
\(\chi_{3503}(219,\cdot)\)
\(\chi_{3503}(256,\cdot)\)
\(\chi_{3503}(388,\cdot)\)
\(\chi_{3503}(593,\cdot)\)
\(\chi_{3503}(932,\cdot)\)
\(\chi_{3503}(934,\cdot)\)
\(\chi_{3503}(1273,\cdot)\)
\(\chi_{3503}(1349,\cdot)\)
\(\chi_{3503}(1372,\cdot)\)
\(\chi_{3503}(1465,\cdot)\)
\(\chi_{3503}(1744,\cdot)\)
\(\chi_{3503}(2050,\cdot)\)
\(\chi_{3503}(2062,\cdot)\)
\(\chi_{3503}(2143,\cdot)\)
\(\chi_{3503}(2389,\cdot)\)
\(\chi_{3503}(2403,\cdot)\)
\(\chi_{3503}(2422,\cdot)\)
\(\chi_{3503}(2482,\cdot)\)
\(\chi_{3503}(2705,\cdot)\)
\(\chi_{3503}(2761,\cdot)\)
\(\chi_{3503}(3383,\cdot)\)
\(\chi_{3503}(3418,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3165,342)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{5}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 3503 }(109, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{16}{35}\right)\) |
sage:chi.jacobi_sum(n)